If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5+y^2=25
We move all terms to the left:
5+y^2-(25)=0
We add all the numbers together, and all the variables
y^2-20=0
a = 1; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·1·(-20)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*1}=\frac{0-4\sqrt{5}}{2} =-\frac{4\sqrt{5}}{2} =-2\sqrt{5} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*1}=\frac{0+4\sqrt{5}}{2} =\frac{4\sqrt{5}}{2} =2\sqrt{5} $
| 384=-8(7n+1) | | 2.1=y-4.9 | | 2.4^x+4=30 | | 6x+14=12x-58 | | 384=-8(-7n+1 | | (b÷3)+6=10 | | g+316/27=21 | | (2n+-4)5=-40 | | 3z^2=127 | | 824=59+17z | | (m+44)=(2m-7) | | 959-s=746 | | 17=-9+k | | 7=4(1.07)^t | | 4t-10=70 | | 10d–6d=12 | | 6+51/2-x=3 | | 81/d=9 | | y/5+23=27 | | –25=–5(b–6) | | p+21=19 | | 81-c=37 | | 5+9•=n | | j/2+25=32 | | 5f+4f-1+2=5 | | (a+117)=(2a+8) | | a=76+14 | | (x-316)=(-2x+2) | | (-4m-14)=(m-579) | | 10m+3=43 | | (-3k+13)=(k-299) | | -24+0.44x=-19+1.69x |